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RESEARCH MEMORANDUM

A THEORETICAL ANALYSIS OF A SIMPLE AERODYNAMIC DEVICE TO
IMPROVE THE LONGITUDINAL DAMPING OF A CRUCIFORM
MISSILE CONFIGURATION AT SUPERSONIC SPEEDS

By James E. Clements
SUMMARY

A theoretical analysis of a cruciform missile configuration equipped
with floating controls has been performed to determine if such controls
can be utilized to improve the airframe transient response characteris-
tics. This investigation covers either forward or aft .locations of the
floating controls at supersonic speeds. The anslytical investigation was
conducted mainly by factoring the characteristic equation of the system
end examining the roots of the airframe and control modes of motion
although other supplementary techniques were employed.

The results of this investigetion indicate that, for operation of
the floating-control airframe over the Mach number and altitude ranges
_considered in this analysis, a substantial increase in airfraeme demping
can be obtained through a proper selection of the hinge-moment coeffi-
cients and through the use of a fixed-rate viscous damper attached to the
floating-control surfaces.

A method is presented in the appendix to predict the maximum eirfreme
damping and the associated control-surface damping rate for amy prescribed
values of the hinge-moment coefficients at any flight condition.

INTRODUCTION

As part of the research program concerned with simplifying missile
control systems, the Automatic Control Dymemics Section of the Langley
Pilotless Aircraft Research Division has conducted investigations on some
simple serodynamic devices to augment missile demping. This paper inves-
tigates the effect of viscously restrained free-floating controls (hence-
forth referred to as floating controls) on the demping in pitch of a
eruciform cenard finned missile in supersonic flight. The Increase in
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missile demping results from the-introduction of - a control demper to
supply the necessary phase lag between the airframe and control motion

in combination with a proper selection of the hinge-moment coefficients.
The control: surfaces are free to float to their equilibrium position
restrained only by the viscous damper. Furthermore, the control-surface
damping rate is assumed to result entirely from the viscous-damper (aero-
dynamic contribution is considered mnegligible). The results are presented
in the form of stability plots and demping plots for various -control char-
acteristics and flight conditions. ~

Similar studies along these lines have been conducted for airplanes
with free-floating control surfaces. A theoretical analysis i1s presented
in reference 1 and the results of a flight test are given in reference 2.

SYMBOLS

m airfreme mass, 5.05 slugs

¢ wing mean serodynamic chord, 1.776 ft

[ .floating-control mean aerodynsmic chord, 0.458 ft

S totél wing areas, one plane, 4.1 8q ft

Se floating-control exposed area, one plane, 0.281 sq £t

IY moment of inertia of airframe about Y-axis, 31.3 slug-ft2

I. moment of inertia of floating control gbout hinge line,
0.0024k slug-£t2

v velocity, ft/sec

q dynamic pressure, Ib/sq £t

Zh distance between airframe center of gravity and floating-control
hinge line, ft

0 pitch angle, radians

o) angle of attack, radians

s} - floating-control-surface deflection angle, radians

M Mach number
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T, /2 time to demp to half amplitude
Cp 1ift coefficient, L;gt
Cn pitching-moment coefficient, Pitching_moment
aSc
Cn hinge-moment coefficient, H
R N
¢, =L
Io ~ %
oy = 2L
s %
Gﬂl = % '
a O

Oy =%
oy -
g BV EcV_
Cm. = .Eﬂl_
T, . ©
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ac

= b

Cha. ~
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" hinge maoment, ft-1b
. _ OH
R
Qa airframe percent critical damping parameter
§c floating-control percent critical damping parameter
wna . alrframe undamped natural frequency, radians per second
mnc floating-control undamped natural frequency, radians per second
P differential operator, d/dt -

A,B,C,D,E -coefficients of fourth-order characteristic equations

1 1 1

ca 2 Cc > Cuna ) U.)nc' values of ga, gc, (Dna, a_nd a)nc at Peak
airframe damping

DESCRIPTION OF ATIRFRAME AND APPARATUS

The aeirframe utilized in this analysis is a cruciform canard finned
missile. The wings and canards have leading edges swept back 60° and are
in line. Iisted in table I are the estimated stability derivatives for
a static margin of 56 percent mean aerodynemic chord at M = 1.6, over
a Mach number range. Additional stability derivatives for other values
of static margin can be obtained from reference 3. A sketch of the model
is presented in figure 1 along with the basic mass and dimensional
characteristics.

The canards and wing-tip controls are of delta plan form with epprox-
imately equal lever arms to the eirframe center of gravity. Throughout
the analysis.it is assumed that the floating-control surfaces are mass
balanced and the hinge-moment coefficients Cha and Ch8 can be readily

obtained for the delta plan form through’'a selection of the hinge-line
location and if necessary the addition of springs. A further assumption
to simplify the analytical computetion is that the inertia about the
hinge line of the wing-tip control surface and the canard surface is the

sgme .

Presented in figure 2 is a sketch of a proposed viscous demper that
was built and bench tested to determine if the values of the floating-

control-surface damping rates covered in this Investigation were realizable.
= J
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Also shown in figure 2 is a typical installation for either floating
canards or wing-tip controls.

The results of the bench test indicate that demping rates between
0.5 and 3.0 ft-1b/redian/sec can be obtained from this type of damper
using silicone base fluids with viscosities between 50,000 and
1,000,000 centistokes. A possible disadvantage to this type of damper
was also disclosed in the bench test. At low h%nﬁe maments, the damping
rate tended to lncrease due to friction in the O ring seals and bearings.
Furthermore, at low hinge moments the damping fluid no longer has the
tendency to shear but becomes more elestic in nature and resistant to
shear. The effect of this nonlinear demping action on the dynamic char-
acteristic of a missile configuration in flight is not known but is not
felt to be serious because of the large aerodynamic unbalanced controls
utilized in this investigation.

METHODS OF ANALYSIS
Equations of Motion
The airframe equations of motion in pitch, assuming two degrees of

freedom with constant forward velocity, are linear differential equations
with constant coefficients and are as follows:

%‘é(é - &) = Cr o+ Cp.d | (1)
Tv o a . g .
E¥S€e=cmaa,+cm65+cmq-2%e+cm&§v—m (2)

The differential equation describing the motion of the floating controls
is

q;zac(g + 8) = Chaq + ChSB + Chéé + Chéé (3)

where the floating controls are assumed mass balanced and with the
substitution:

2%
Ché Ch&(?é) for controls aft of center of gravity

lh
Ché Chu,(_ 7) for controls forward of center of gravity.
. GO
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The effect of the upwash created by the vortices shed from the for-
ward control surfaces on the floating wing-tip controls was initially
considered and was found to have a negligible effect on the airframe
dynemics and therefore is not included in this analysis.

Combining the airframe equations of motion and the floating-control

equation and solving for the characteristic equation of the system results
in a fourth-degree polynominal of the form

At +BpP + Cp2 + Dp + E = 0 (L)
where the varisble p 1s the differential operator d/dt.
Defining the coefficients of the characteristic equations as vari-

gbles in Chm’ ChB’ and Ch.6 glves

B

agbjey - a1bpey - 81bLC) - 81010k

C = a-lb5cl - B-lb3cl - &3bll_cl - aabacl + alb)_I_CbBo -

D= a.2b5c1 - a.3b3cl + alb3ché + aebaché + a]_b)_'_ChG + a.leChB_—

E = alb30h6 + azbzcha + a3b3c20hu' - ajszha' - a.2b5c20ha - a]_b5Chu‘

where
= oV

8y = s 8o = CLu 8z = CIS

I a -
mTgE et P3O, W TOmz 5T
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Stebility Criterion

The Routh-~-Hurwitz stability criterion was utilized to construct
stability boundary plots for the floating-control airframe. The Routh
criterion simply states that for a fourth-degree polynaminal, if all
powers are present and have the seme algebraic sign, then for stability
the following reletion must be satisfied:

(BC - AD)D - B%E > 0

Solving the Hurwitz determinant for a fourth-degree polynaminal
yields the following conditions for stebility:

A>0

B>0

E>0
(BC - AD) >0

(BC - AD)D - B2E > 0

which is precisely Routh's criterion; for, if all the coefficients are
positive, then the only independent equation 1s the last. A more complete
presentation of the Routh-Hurwitz stability criterion can be found in
reference 4.

For this analysis, the airframe neutral oscillatory-stability boundary
is delermined by letting (BC - AD)D - B°E = 0 and the floating-control
static-stability boundary defined by letting E = 0. In each case the
coefficients of the characteristic equation are written as variables

in Chd,’ Chs, and Ché.

Analysis of the Airframe and Control Dynemic Characteristics

One approach to this type of investigation is to plot lines of con-
stant Ty /2 (time to deamp to half amplitude) for the airframe in the

stable region. Examples of an application of this technique for a fourth-
degree characteristic equation can be found in reference 5. Although this
type of analysis was valusble in esteblishing the region of improved air-
frame damping, little information as to the dynamic characteristics of the
airframe was obtained in spite of the lengthy machine camputation neces-
sary to compute a .family of constant Tl/2 curves. The method adopted

consisted of factoring the characteristic equation of the system in order

R —-
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to observe the effect on { and wy of verying the control character-
istics. In this way the dynsmic characteristics of the missile can be
expressed in a quadratic form as is usual in many applications. It
should be remembered when analyzing the results that in most cases an
increase in the airframe percent critical damping parameter § is
usually accompanied by a decrease in the airframe undamped natural fre-
quency a,, so that it is possible to actually increase Tl/2 even

though { may incresase.

Defining the coefficients of the characteristic equation as varia-
bles in terms of the hinge-moment coefficients and factoring over & range
of the coefficients results in two quadratic expressions representing the
airfreme and control modes of motion. In general, the airframe mode is
composed of two camplex conjugate roots and the control mode is camposed
of either two complex conjJugate or two real roots depending upon the
magnitude of control damping. The advantage in factoring the character-
istic equation is readily apparent in that the trends of demping and
natural frequency for both modes of motion can be observed as the hinge-
moment coefficients are varied.

RESULTS AND DISCUSSION

The cruciform airframe of figure 1 has been analyzed with floating
controls either aft or forward of the airframe center of gravity. The
flight conditions investigated are M = 1.2, 1.6, and 2.0 at sea level
and M = 1.2 at 15,000 feet.

Stebility Boundaries

The stable region for the airframe with floating controls is shown
in figure 3 es a plot of the floating-control parsmeters Chm’ ChB’

and Ché' The boundaries of the stable region are formed by the alrframe

oscillatory boundary and the control static-stebllity boundexry. The air-
frame oscillatory boundary is determined by one of the roots of the sta-
bility condition (BC - AD)D - B2E = 0. Crossing the airframe oscillatory
boundary fram the stable region yields for the airframe mode a pair of
complex conjugete roots with positive real parts. The control static-
stability boundery is determined by letting E = 0 and is inveriant with
control-surface demping. Crossing the control static-stability boundary
from the stable region will result in a pair of real roots, one of which
1s positive for the control mode. -
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The region of improved airfreme demping in the stable region is
determined by factoring the characteristic equhtion. For floating con-
trols forward, positive Cha is required to improve the airframe response

end, conversely, with floating controls aft, negative Ch@ is required.

Omitted from figure 3 for clarity is the position of the alrframe
oscillatory boundary at values of control-surface damping approaching
the magnitude of the availsble aerodynamic control-surface damping. At
these low values of control-surface demping, the movement of the airframe
oscillatory boundary with increasing increments of control-surface dsmping
is opposite fram that shown in figure 3 in that the stable region increases
in size as Ché is increased until at a particular value of Ché i1t will

again begin to decrease and exhibit the trend as shown in figure 3. Also,
at these low values of control-surface demping, the sign of Cha to glve

improved airframe damping will be opposite from that necessary at the
higher values of Chg' Although it is possible at low values of Chg to

improve the alrframe demping, this region becomes of 1little value because
of the very limited improvement in the airframe response that is possible.
The remsirder of this investigation will be concerned with the reglion of
improved demping at the higher values of Ché where a very significant

increase in airframe demping is attainsble.

Airframe Dynemic Characteristics

To analyze the effect of varying the hinge-moment parameters Chm’
ChB’ and Ché on the damping of the airframe, lines of constant Tl/2

were plotted and the characteristic equation was factored through a range
of flight conditions and control characteristies. As both methods of
enalysis require extensive computation, machine calculation 1s necessary.

Constant Tl/2 plots.- In figure 4 a typical result of plotting lines
of constant Ti/p 1s presented. The data are for one value of control-

surface damping Chg and for one flight condition. For the basic fixed-

control airframe, the time to damp to half amplitude is 0.194 second for
the flight conditions of figure 4. TFrom figure 4 it is shown that under
the specified conditions of the control parameters “the time to damp to
half smplitude can be reduced to 0.0578 second or by as much as TO percent.
Also fram figure 4t it can be seen that for a value of chB = -0.2 to -0.3

the greatest improvement in airfreme response can be achieved at smaller
magnitudes of Cha' From additional plots of this type for other wvalues

of control-surface damping and flight conditions, it can be established

CONRID NIRRT
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that this value of Ch6 remains essentially constant. This suggests
that once this pseudo-optimm value of Ch6 has been determined the
analysis can be simplified through the elimination of Chﬁ as a varlable.
A plot of constant T1/2 in the Cha’ché plane can then be constructed,

presenting a more camplete picture of the effect of varying Cha and Ché
on the airframe response.

Effect on the airframe mode of varying the control parameters.- To
understand more clearly how variations in the control parameters affect
the airfreme and control modes of motion, the characteristic equation
was factored for a range of control paremeters and the roots examined.

A constant Ch6 was assumed based upon the results of the constant Tl/2

analysis. Presented in figure 5 is the general trend of eirframe damping
and natural frequency as the control parameters C;, and Ché are varied
a

along a constant Ch6 line in the stable region as shown in the inset.

The origin of the curves represents the damping and natural frequency of
the airframe when Cha equals zero or approximately the damping and

natural frequency of the fixed-control airframe. In figure 5 an addi-
tional characteristic of floating controls is shown. At low values
of Ché the natural frequency of the airframe can be appreclably changed

without materially affecting the demping of the airframe. Although mag-
nitudes are not shown in figure 5, the change in natural frequency can
be as much as double or half the original frequency. This effect on ®n

at low Chg is easily calculated since, depending on the floating tend-

ency, the control simply adds or subtracts to the static-staebility param-
eter as follows:

The useful region for this investigetion is the upper left portion
of figure 5 where improved airframe damping is obtained as a result of
adding dsmping to the floating control through a viscous damper. The
effect of adding dempling to the floating control is to cause the control
motion to leg the airframe displacement and to became more in phase wlth
the rate of displacement thereby providing increased airframe demping.

Effect of viscous demper on airframe dynamics.- In figure 6 this
region of improved airfreme damping is plotted for the floating-controls-
aft case at M = 1.2, 1.6, and 2.0 at sea level and M = 1.2 at
15,000 feet. It can be seen fram an examination of these plots that no

ONEERElphe
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one value of Ché can be selected that would give the maximum improvement
in airframe damping for any value of Chc. or any Mach number but that a
compromised value of Ché could probably be selected that could very

neerly give the maximum improvement possible. For example, from figure 6,
meintaining a value of Ché = -0.004 as the Mach number varies from 1.2

%0 2.0 at constant altitude would almost give the meximum improvement in
girframe damping for eny operating value of Cha, _shrough this Mach number

range. As the dynamic pressure will increase by approximately a factor
of 2 through this Mach number range; maintaining a constant Ch-B would

probably present a rather complex mechanical problem in that the demping
rate (HB) of the viscous damper would have to decrease by a factor of 2
in order for Ché to remain constant. Assuming that this would be an

unnecessary additional camplexity, a more feasible approach from the
viewpoint of simplifying the viscous damper would be to design the damper
for one average damping rate through the expected Mach number range.

When altitude variation for the floating-control sirframe is con-
sidered, a more favorable situation exists because the value of Ch;(3

that gives maximum improvement in airframe demping at a particular value
of Cp will increase as the altitude increases. This can be seen by
o4

comparing the plots for M = 1.2 at sea level and 15,000 feet in figure 6.
The increase in the optimum value of Ch'5 will tend to offset the decrease

in dynamic pressure thereby mainteining a fairly constant design demping
rate H5 to give maximum improvement in alrframe damping as the altitude
varies. -

If the viscous damper is to be designed for one damping rate as the
Mach number varies, some value of airframe demping other than the maximum
possible at a particular value of Cho. will result. Figure 7 shows how

ChB- will vary with Mach number if a constant demping rate is assumed.

The shaded area is plotted from the data of figure 6, and represents the
range of Ché that gives meximum airframe damping for values of Cha,

between -0.5 and -0.9. The two values of HB were chosen to give nearly
maximm airframe demping characteristics at M = 1.2 and 1.6.

For either of the two values of H5 selected, same velue of alir-

frame damping other than the meximum possible will result. This is demon-
strated in figure 8 where the airframe demping has been plotted against
Mach number for the two constant values of H6 The dashed curve repre-

sents the meximum damping possible as taken fram figure 6 and the solid
curve is the airframe damplng that results when a constant HE is assumed.
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The shaded area then represents the penalty in airframe damping due to
using a constant Hy for the two values of Cho, shown. It can be seen

from figure 8 that for values of Cp, eaual to or greater than -0.5

either of the two values of & allows a minimum improvement in airframe
damping of greater than a factor of two.

From the results of figure 8 and knowing that the optimum value
of Ché increases with increasing altitude as previously discussed, it

appears that a viscous damper could be designed for one demping rate that
would give an appreciable improvement in the airframe damping over the
Mach number and altitude ranges covered in this investigation.

Relation Between Airframe and Control Modes

The airframe dynamic characteristics are given as functions of the
control dynamic characteristics in figures 9 and 10. Figure 9 shows that
the peak airfreme damping for any value of Cha. occurs at a constant

value of the control damping parameter Qc and is unique with each flight

condition. In figure 10 it is also to be noted that the peak alrframe
demping for any value of Cha, occurs at a constant ratio of the airframe

and control undemped natural frequencies. The origin of the curves again
represents the damping and natural frequency ratio of the floating-control
airframe when Cp, equals zero.

To determine if the trends of figures 9 and 10 were valid for scme
other value of Cpgy, additional plots similar to figures 6, 9, and 10
were constructed for a value of ChB = -0.5. The results are presented

in figure 11 for M = 1.2 at sea level. The trend of the meximum a.ir;’rame
damping always occurring at constant values of §c and Wn, /mﬂa. is still

seen to be true.

Figures 9, 10, and 11 will be utilized more extensively in the
appendix where a rapid method for predicting the viscous-daemper require-
ments and the resulting airfreme damping for any cambination of Cha,

and ChB is presented.

General Comments on the Application of Floating Controls

The hinge-moment characteristics of the half-delta control surfaces
are such that if the hinge line is adjusted for the desired Chu.’chﬁ

relation it becames possible for the control mode to be statically unsta-
ble at subsonic and near supersonic speeds. This is particularly true

DONC TN
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for the controls-forwerd situation (positive Chu. to improve missile

damping) because the tendency is for Chm to increase positively as

transonic flight is approached moving the control characteristic toward
or into the unstable region. For a ground-lsunched missile with the
floating controls forward, some means would have to be devised to lock
the floating surfaces until supersonic flight is attained.

When selecting the control-gurface damping rate, it should be remem-
bered that it is generally possible to obtain the same value of airframe
damping at two values of Cpg (fig. 6). The lower value will in most

cases cause an appreciable reduction in the airframe natural frequency
resulting in 1ittle or no improvement in the time to damp to half ampli-
tude for the airframe mode. If possible, the damping rate should be
selected to give the smallest variation in airframe natural frequency
over the expected Mach number and altitude ranges.

There are generally two methods used to adjust the hinge-moment
characteristics. They are (1) the adjustment of the hinge-line position
and (2) the addition of springs. These two methods are often used sin-
gularly or togetper depending on the desired ratio of Cha and ChB' If

springs are used to adjust ChS’ then it should be remembered that the
value of ChB will no longer remain constant with Mach number and alti-

tude a8 assumed in the analysis but will be a direct function of dynemic
pressure. Furthermore, if spring-restrained control surfaces are used,
the ratio of control natural frequency to airframe natural frequency
(fig. 10) will not be independent of altitude since Cp, 1s the sum of

the aerodynamic and spring-restraint contributions. ZExtending this line

of reasoning further, it is also possible for the spring-restrained
floating-control airframe to be stable at one Mach number or altitude

and became unstable at some other Mach mmber or altitude since the
spring-restraint contribution to Ch8 can either add or subtract depending

upon dynamic pressure.
CONCLUUDING REMARKS

From the results of this investigation, it can be concluded that a
substantial improvement in airframe damping is possible utilizing floating
controls. The data presented emphasize the importance of adjusting the
floating-control hinge-mament coefficients and the need for a control-
surface demper to provide artificial damping sbout the floating-control
hinge line. Furthermore, if the floating-control damper is designed for
only one demping rate, it is still possible to obtaln a substantial

ST ———
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improvement in sirframe damping over a limited Mach number range and
" altitude range.

In all cases investigated, an increase in airframe damping was accam-
panied by a decrease in the airframe natural frequency. This decrease in
natural frequency can conceivably increase the alrframe transient response
time even though the percent critical demping parsmeter mey increasse. The
reduction in eirframe natural frequency can be minimized through a proper
selection of the floating-control damping rate.

A method is presented in the appendix to estimate rapidly the maxi-
mm airframe percent critical damping and the floating-control dsmping
rate for any cambination of the floating-control hinge-moment coeffi-
clents Chu, and ChB and any f£light condition.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronasutics,
Langley Field, Va., August 2k, 1955.
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APPENDIX
METHOD FOR ESTIMATING AIRFRAME AND VISCOUS DAMPER CHARACTERISTICS

The two techniques employed in this investigation to analyze the
floating-control sirframe required lengthy machine computation. In en
effort to shorten the camputation time, & method is presented herein
which allows the predlction of the floating-control airframe character-
istics at the peak values of airframe damping for any combination of Cha

and Cha.

In order to predict the peak value of airframe demping ga‘ and the
associated floating-control dynamic characteristics gc' and mnc', the

significant trends-of figures 9, 10, and 11 will be utilized. First a
method will be derived to predict the value of the ratio wn /a%%_ and

the value of §c at the peak values of alrframe damping as shown in
figures 9, 10, and 11.

Determination of the Ratio wnqﬁgna

Fram figures 10 end 11(c) it is seen that the value of the ratio
wnc/Dna at pesk airframe demping is the same as the value of the ratio

when Cha 0. The undamped natural frequency of the alrfrasme and con-
trol modes when Cha = 0 1is readily spproximated by the following

expressions:

I ()
IY7qSE

C
o, 2= "

= —2 6
De Ic/ch'éc (6)

The value of the ratio for peak alrfreme damping then becomes .

(7)
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This expression for the value of the ratio when Cha 0 1is seen to be
independent of altitude if the value of Ch8 is dependent upon aerody-

nemic forces only and is not the sum of an aerodynemic force and a spring
force as discussed in the section of the ,paper entitled "General Comments
on the Application of Floating Controls."

Determination of Oy for Speclfied Conditions of cba, and Ch6

Writing the fourth-order characteristic equation as follows:

L, B3 2,D E_ '
P+ DT+ +EP+E=0 (8)

S
Lo

and assuming that it can be factored into two quedratic factors repre-
senting the airframe and control modes of motion results in the following
characteristic-equation representation:

(p2 + 20g0n P + ‘Dnaz) (132 + 2Lqon P + mnce) =0 (9)

By inspection, the value of the coefficient E/A is wna%uHCZ end if
%cy%a' = K, then for peak airframe damping

E-,)" (10)

Referring to the coefficients of the characteristic equation as previously
defined for equation () of the text and obteining an approximate evalua~-
tion for E/A by selecting the most importent parsmeters yields

E _ &1P30hy - 8105Ch, (11)

a1bjcq

L

Equeting equations (10) and (11) gives the expression

E zal.]_b3ch{5 - alb5chu Ak
K- a1b1¢1 ) Kz(wna) (12)
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fram which the undemped natural frequency of the airframe at peak airframe
demping can be obtained for any specified values of Cha. and Ch6 and

any flight condition. Once a)na' is determined from equation (12), the

undemped natural frequency of the control mode is easily computed from
equation (7).

Determination of the Value of -Qc' for Peak Airframe Damping

The coastant value of gc' " for peak airfreme demping as shown in
figures 9 and 11(b) can be estimated if it is assumed that for peak air-
freme damping the control motion lags the airframe motion by 45° and the
frequency at which the control motion lags the airfreme motion by 45° is
the undemped netural frequency of the airframe, which for this case
is u.)na' . Although the frequency of the disturbed airframe oscillation

will not be the undemped airframe natural frequency, the error induced
by this assumption is negligible. This can be verified by plotting the
frequency response of the airfrsme and control modes of motion for a
combination of control parameters that gives peek alrfreme damping. The
frequency response plot shows that at frequencles near the airframe
undamped naturgl frequency the phase angle of the control mode is rela-
tively insensitive to small changes in frequency. Therefore, only slight
changes in the phase-angle mesgnitude will result if the disturbed air-
freme frequency is different from the undamped natural frequency of the
airframe.

The phase angle @ of a quadratic factor of the general form

(2 + 2tomp + 02) (13)

at a particular frequency (w) 1s defined by the following expression

(ref. 6):
¢ = —tan~t _g_eg w%) (14)

)

For this case, let equation (13) take the form of the control mode

(p2 + 2§ccnncp + ‘Dnca)

o
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and in equation (1), let the phase angle @ = @, = 45°, let the fre-
quency o be the natural frequency of the airframe a.\na' let w, = wnc' B
end let ¢ = {,'. With these substitutions, equation (14) can be rewritten
in terms of the control-mode parameters as follows?

(Dn'
ot.' —Ta>
-1 c<wnc

b = 1% = —tan ()
Solving equation (15) for t.' glves
N2
- )
te' = T (16)
© o ;an_a_.
(Dncl
and, if (%c'/%al) = K as before, yields
2
6. = S (17)

Determination of Ché' for Peak Airframe Damping

Equation (17) gives the value of the control-mode damping ¢{,' that
gives peak airframe demping. Once this value of gc' has been determined

for a particulsr flight condition the control-surface demping rate governed
by the value of Cha-' can be readily determined fram the following relation:

i (18)

2 1 1 -
e “ng I, qucac
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Determination of the Peak Airfreme Demping (g’

Up to this point it has been possible to choose a flight condition,
select the values of Cha, and Chﬁ , and then to predict the control dyna-

mic characteristics, the control demping rate, end the alrframe undamped
natural frequency that gives a peak value of airframe damping ga‘ . The

value of ga' can be gpproximated by proceeding along the following lines.
Rewriting equation (9) in terms of the already known quantities gives

[p2 + 2ty 'wy 'p + (wna'>ﬂ,:92 + 26‘2—2{{—1) (Kmna')p + Ka(asna')z (19)

Now writing equation (19) in the form of equation (8) and equating coef-
ficients of like powers to the coefficients of equation (8) gives for
the value of C/A

c (%a')a[l + 2ty (K2.- 1) + Kﬂ (20)

Referring again to the definition of the coefficients of equation (%) as
previously defined in the text, an approximate evaluation for C/A can
be obtained by selecting the most important parameters. Thus,

albgChé' - a,gb]_C};%' - ta.]_b]_Ch6 - alb3zel

(21)
alblcl

=l

Equating equations (20) and (21) gives the following expression in which
all quantities are known except {,':

LN T SRR e

Sample Calculation

The procedure that has been outlined could probebly be more clearly‘
understood 1f a sample calculation were made. The airframe is the alr-
frame of this analysis and the floating controls are assumed aft of the
center of gravity. The flight condition to be investigated is M = 2.0
at sea level and the values of the floating-control hinge-moment coeffi-
cients are Cp, = -0.8 and Cpy = -0.2. The problem is to determine the

CTTERAT T A=

SN
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viscous damping rate that will give maximum airframe demping for the
assumed conditions and the value of the airfreme demping {,'.

I - Determination of the value of the ratio @, /wna = K as shown in
figure 10:

2 = e = e
(%a )Chafo Ty/qSC 7.188 x 10°*

C
2\ _ hB _ (—0.2) =6

== - = 63,191

(‘Dnc )ch;o Tc [a8cCc 3,165 x 1070

K =5.98
II - Determination of the value of E/A for Cha, and Ch6 selected:

E _ %1Ps0hy - 31P5Chy
A 81b1¢y

_ (0.1;624)(-;.27)(-0.2) - (0.4624)(-0.206)(-0.8)
10.522 x 10~10

=

39.20 x 10°

= I
1l
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III - Determination of the peak airframe natural frequency and control
naturael frequency for Cha and Ch6 selected:

@ (ay, ') = B/A = 39.20 x 10°
6
wﬁa' = 32,36
on,' = Koy ' = (5.98)(32.36)
a)nc' = 193.5

IV - Determination of the constant value of Qc' as shown in figure 9:

£ = K2 -1 _ 35.765 - 1
¢ 2K 2(5.99)

t.' =2.91

V - Determination of magnitude of control-surface demping coefficient Cbé'=

Cpa '
hﬁ - 1 1
IC/hSCEC 2o “re

ché'

IR Y= 2(2.91)(193.5)

LI . \
Chg 0.00356
or the required viscous damping rate is

B = -2.7h ft-1b/radian/sec

L1
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VI - Determination of magnitude of airframe demping parameter (,':

Gl ) 23 i) oo

(-5.56 x 10:3) [ 246 (-2.9h x 1073)| | _(-1.er)  _ (-0.2) | _
3.165 x 1070 [(_"”621‘ 7.188 x 107* 7.188 x 107%  3.165 x 1070

(32.36)2[1 + 2(8,')(35-765 - 1) + (35-765ﬂ
or

10,585 + 64,958 = 38,491 + T72,792¢, "

t ' =0.51
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TABLE I

ESTIMATED LONGITUDINAL STABILITY DERLVATIVES

Eta.‘t.ic margin of 0.56% et M = 16:|

TGN

B T
Mach a, v, . . . ¢ O, (vt (ving
mumber b/eec | ft/sec | “mg o, | m, T | (canards) tip tip)t
1.2 2,132 | 1,339 |-8.88 | -1.85 | -0.987 | 3.02 0.820 -0.328 | 0.15
1.6 3,791 | 1,785 | -8.47 | -1.h7 | -.941 | 2.61 702 -.24 132
2.0 5,980 2,245 -T.43 | -1.27 -.826 | 2.46 573 -.206 L1l
1.2 1,200 | 1,269 | ==me= | =mmmm | mmmee e B I il Bttt
(15,000 £t)

lCIB essumed zero for cenards.
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0" Ring 7/ Control surface
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\ filler tube

NOTE: Gap distance between control surface torque rod
and inner surface of cylinder depends upon viscosity

of fluid and damping rate desired.
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Figure 2.- Sketch of proposed viscous damper for use with floating
control. surfaces with two typical installations shown.
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